Maternal embryonic leucine zipper kinase (MELK) regulates multipotent neural progenitor proliferation

نویسندگان

  • Ichiro Nakano
  • Andres A. Paucar
  • Ruchi Bajpai
  • Joseph D. Dougherty
  • Amani Zewail
  • Theresa K. Kelly
  • Kevin J. Kim
  • Jing Ou
  • Matthias Groszer
  • Tetsuya Imura
  • William A. Freije
  • Stanley F. Nelson
  • Michael V. Sofroniew
  • Hong Wu
  • Xin Liu
  • Alexey V. Terskikh
  • Daniel H. Geschwind
  • Harley I. Kornblum
چکیده

Maternal embryonic leucine zipper kinase (MELK) was previously identified in a screen for genes enriched in neural progenitors. Here, we demonstrate expression of MELK by progenitors in developing and adult brain and that MELK serves as a marker for self-renewing multipotent neural progenitors (MNPs) in cultures derived from the developing forebrain and in transgenic mice. Overexpression of MELK enhances (whereas knockdown diminishes) the ability to generate neurospheres from MNPs, indicating a function in self-renewal. MELK down-regulation disrupts the production of neurogenic MNP from glial fibrillary acidic protein (GFAP)-positive progenitors in vitro. MELK expression in MNP is cell cycle regulated and inhibition of MELK expression down-regulates the expression of B-myb, which is shown to also mediate MNP proliferation. These findings indicate that MELK is necessary for proliferation of embryonic and postnatal MNP and suggest that it regulates the transition from GFAP-expressing progenitors to rapid amplifying progenitors in the postnatal brain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maternal embryonic leucine zipper kinase is a key regulator of the proliferation of malignant brain tumors, including brain tumor stem cells.

Emerging evidence suggests that neural stem cells and brain tumors regulate their proliferation via similar pathways. In a previous study, we demonstrated that maternal embryonic leucine zipper kinase (Melk) is highly expressed in murine neural stem cells and regulates their proliferation. Here we describe how MELK expression is correlated with pathologic grade of brain tumors, and its expressi...

متن کامل

Maternal embryonic leucine zipper kinase regulates pancreatic ductal, but not β‐cell, regeneration

The maternal embryonic leucine zipper kinase (MELK) is expressed in stem/progenitor cells in some adult tissues, where it has been implicated in diverse biological processes, including the control of cell proliferation. Here, we described studies on its role in adult pancreatic regeneration in response to injury induced by duct ligation and β-cell ablation. MELK expression was studied using tra...

متن کامل

Maternal embryonic leucine zipper kinase inhibits epithelial-mesenchymal transition by regulating transforming growth factor-β signaling

Maternal embryonic leucine zipper kinase (MELK) performs an important role in self-renewal and proliferation of progenitor cells or tumor stem cells, and is expressed in aggressive cancers, contributing to tumorigenesis. However, the function of MELK in metastasis is unknown. In the present study, the lung cancer A549 cell line was utilized in order to study the role of MELK in epithelial-mesen...

متن کامل

Maternal Embryonic Leucine Zipper Kinase (MELK): A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer

Maternal embryonic leucine zipper kinase (MELK) functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the ef...

متن کامل

MELK—a conserved kinase: functions, signaling, cancer, and controversy

Maternal embryonic leucine zipper kinase (MELK) is a highly conserved serine/threonine kinase initially found to be expressed in a wide range of early embryonic cellular stages, and as a result has been implicated in embryogenesis and cell cycle control. Recent evidence has identified a broader spectrum of tissue expression pattern for this kinase than previously appreciated. MELK is expressed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 170  شماره 

صفحات  -

تاریخ انتشار 2005